Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 23, 2026
-
Free, publicly-accessible full text available June 23, 2026
-
Engineering education research groups strive to transform the field of engineering through the integration of research and practice. Many of these research groups are interdisciplinary, including individuals from different fields (e.g., engineering, engineering education, education, sociology) and different roles within an institution. These individuals bring their own approaches to the generation, expression, and application of knowledge. While these epistemic differences can support the use of novel, interdisciplinary approaches, they can also lead to tensions that prevent groups from meeting their core goals. The goal of this project is to explore how engineering education research groups navigate these epistemic differences and engage in critical conversations to make research decisions. In Phase A of our study, we used Longino’s Critical Contextual Empiricism framework, which defines four norms of an idealized knowledge generating community to characterize the epistemic culture of the groups we studied. In this paper, we focus on how the norm of providing venues for critique and idea sharing supports critical conversations and inclusion among group members. We identified three affordances related to a group’s use of shared agendas, a type of venue that facilitate discussion of multiple project efforts, facilitate participation, and support group memory. Our work shows the importance of considering the details of the venue used to hold group meetings and how aspects of these spaces can support critical interactions among group members.more » « lessFree, publicly-accessible full text available June 23, 2026
-
This work investigates how innovations propagate through two professional networks (guilds): the Kern Entrepreneurial Engineering Network (KEEN) and the Consortium to Promote Reflection in Engineering Education (CPREE). Previous research has demonstrated that the adoption of pedagogical innovations is supported by the socialization of the innovation among potential adopters. In this work, we use social network analysis to explore the impact of professional connections on innovation adoption. Our research questions are: (1) How does overall social structure differ between guilds? (2) How do measures of social network structures relate to innovation adoption? A survey was distributed to members of KEEN and CPREE to capture the interactions respondents had while adopting the guild’s innovation. Social networks were generated for each guild and each respondent. These networks were analyzed to identify relationships between social network measures and the frequency of use of the innovation. Responses to open-ended questions were analyzed using thematic coding. The guilds’ overall structures impacted the formation and structure of distinct clusters/cliques, but these differing structures did not appear to affect sustained adoption. Individuals’ ego networks demonstrated a weak negative correlation between the frequency of adoption and the individual’s ego network density. Our results imply that having a diverse network exposes instructors to more ideas or allows them to see one idea from many perspectives.more » « less
-
Although engineering is becoming increasingly important in K-12 education, previous research has demonstrated that, similar to the general population, K-12 teachers typically hold inaccurate perceptions of engineering, which affects their ability to provide students with relevant engineering experiences. Studies have shown that K-12 teachers often confuse the work of engineers with that of automotive mechanics or construction workers or assume that engineering is only for “super smart” students who are naturally gifted or who come from higher socioeconomic backgrounds. This indicates that many teachers do not understand the nature of engineering work and have stereotypical attitudes about who is qualified to be an engineer. These inaccurate perceptions of engineering among K-12 teachers may influence the way that teachers introduce engineering practices to their students and make connections between engineering and the other STEM disciplines. In addition, teacher self-efficacy has been shown to not only influence teachers’ willingness to engage with a particular topic, but also to have a significant influence on the motivation and achievement of their students. Research also indicates that high-efficacy teachers typically exert more effort and utilize more effective instructional strategies than low-efficacy teachers. The goal of this study was to examine the perceptions that pre-service K-12 teachers hold about engineers and engineering, and to further explore how those perceptions influence their self-efficacy with teaching engineering and beliefs about what skills and resources are necessary to teach engineering in a K-12 classroom. We first developed a survey instrument that included questions taken from two previously published instruments: the Design, Engineering, and Technology survey and the Teaching Engineering Self-Efficacy Scale for K-12 Teachers. Forty-two students enrolled in an undergraduate program at {Name Redacted} in which students simultaneously pursue a bachelor’s degree in a STEM field and K-12 teacher licensure completed the survey. Based on survey responses, six participants, representing a range of self-efficacy scores and majors, were selected to participate in interviews. In these interviews, participants were asked questions about their perceptions of engineers and were also asked to sort a list of characteristics based on whether they applied to engineers or not. Finally, interview participants were asked questions about their confidence in their ability to teach engineering and about what skills and/or resources they would require to be able to teach engineering in their future classrooms. The results of this study indicated that the participants’ perceptions of engineering and engineers did impact their self-efficacy with teaching engineering and their beliefs about how well engineering could be incorporated into other STEM subjects. A recurring theme among participants with low self-efficacy was a lack of exposure to engineering and inaccurate perceptions of the nature of engineering work. These pre-service teachers felt that they would not be able to teach engineering to K-12 students because they did not personally have much exposure to engineering or knowledge about engineering work. In future work, we will investigate how providing pre-service teachers with training in engineering education and exposure to engineers and engineering students impacts both their perceptions of engineering and self-efficacy with teaching engineering.more » « less
-
Background: The National Science Foundation (NSF) and other organizations have spent millions of dollars each year supporting well-designed educational innovations that positively impact the undergraduate engineering students who encounter them. However, many of these pedagogical innovations never experience widespread adoption. To further the ability of innovation developers to advance engineering education practice and achieve sustained adoption of their innovations, this paper explores how one community-based model, engineering education guilds, fosters propagation across institutions and individuals. Engineering education guilds seek to work at the forefront of educational innovation by creating networks of instructor change-agents who design and implement a particular innovation in their own context. The guilds of interest are the Consortium to Promote Reflection in Engineering Education (CPREE) and the Kern Entrepreneurial Engineering Network (KEEN). With these guilds as exemplars, this study’s purpose is (1) to articulate how the approaches of engineering education guilds align with existing literature on supporting sustained adoption of educational innovations and (2) to identify how these approaches can advance the science, technology, engineering and math (STEM) education community’s discussion of propagation practices through the use of the Designing for Sustained Adoption Assessment Instrument (DSAAI). The DSAAI is a conceptual framework based on research in sustained adoption of pedagogical innovations. It has previously been used in the form of a rubric to analyze dissemination and propagation plans of NSF educational grant recipients and was shown to predict the effectiveness of those propagation plans. Results: Through semi-structured interviews with two leaders from each guild, we observed strong alignment between the structures of CRPEE and KEEN and evidence-based sustained adoption characteristics. For example, both guilds identified their intended audience early in their formation, developed and implemented extensive plans for engaging and supporting potential adopters, and accounted for the complexity of the higher education landscape and their innovations in their propagation plans. Conclusions: Our results suggest that guilds could provide another approach to innovation, as their structures can be aligned with evidence-based methods for propagating pedagogical innovations. Additionally, while the DSAAI captures many of the characteristics of a welld-esigned propagation strategy, there are additional components that emerged as successful strategies used by the CPREE and KEEN guild leaders. These strategies, including having mutual accountability among adopters and connecting adoption of innovations to faculty reward structures in the form of recognition and funding should be considered as educational innovators work to encourage adoption of their innovations.more » « less
An official website of the United States government

Full Text Available